Forecasting Chaotic Time Series with Wavelet Neural Network Improved by Particle Swarm Optimization
نویسندگان
چکیده
The prediction of chaotic time series is an important research issue. To improve the prediction accuracy, a hybrid approach called WNN-PSO is proposed, which based on the self-learning ability of wavelet neural network, whose parameters are optimized by particle swarm optimization. The WNN-PSO method has higher prediction accuracy, fast convergence, and heightens the ability of jumping the local optimums. The experiment results of the prediction for chaotic time series show the feasibility and effectiveness of the proposed method. Compared with wavelet neural network and BP neural network, the proposed method are superior to them. Finally, the WNN-PSO is applied to predict the life energy consumption of china in our lives.
منابع مشابه
Prediction for Short-term Traffic Flow Based on Optimized Wavelet Neural Network Model
Short term traffic forecasting has been a very important consideration in many areas of transportation research for more than 3 decades. Short-term traffic forecasting based on data driven methods is one of the most dynamic and developing research arenas with enormous published literature. In order to improve forecasting model accuracy of wavelet neural network, an adaptive particle swarm optim...
متن کاملA Multi Time Scale Wind Power Forecasting Model of a Chaotic Echo State Network Based on a Hybrid Algorithm of Particle Swarm Optimization and Tabu Search
The uncertainty and regularity of wind power generation are caused by wind resources’ intermittent and randomness. Such volatility brings severe challenges to the wind power grid. The requirements for ultrashort-term and short-term wind power forecasting with high prediction accuracy of the model used, have great significance for reducing the phenomenon of abandoned wind power , optimizing the ...
متن کاملSales Budget Forecasting and Revision by Adaptive Network Fuzzy Base Inference System and Optimization Methods
The sales proceeds are the most important factors for keeping alive profitable companies. So sales and budget sales are considered as important parameters influencing all other decision variables in an organization. Therefore, poor forecasting can lead to great loses in organization caused by inaccurate and non-comprehensive production and human resource planning. In this research a coherent so...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملStreamflow Forecasting Using Empirical Wavelet Transform and Artificial Neural Networks
Accurate and reliable streamflow forecasting plays an important role in various aspects of water resources management such as reservoir scheduling and water supply. This paper shows the development of a novel hybrid model for streamflow forecasting and demonstrates its efficiency. In the proposed hybrid model for streamflow forecasting, the empirical wavelet transform (EWT) is firstly employed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013